

DESIGN AND TECHNOLOGY Course Overview for Years 7, 8 & 9

Year	TERM 1	TERM 2	TERM 3	Home learning
7	Grab Toy project: Students	Catapult Project: Students	STEM: electricity and	Homework projects are set
	design and make a grab toy using	safely use hand tools and	structures project: Students	throughout KS3. One
	levers, isometric sketching, and	machinery to construct a	investigate electricity by building	homework project is completed
	workshop tools. They explore	working model of a Roman	simple circuits and	by students per term.
	mechanical movement, develop	onager catapult. They explore	experimenting with heat, light,	
	prototypes, and build a functional	ancient engineering, apply	and magnetism. They then	Year 7
	product, refining their work	practical making skills, and	explore structural engineering	Term 1) Branding Project
	through testing and evaluation.	reflect on ethical design	by designing, building, and	Term 2) Pop slot toy design
	Skills include sketching, tool use,	principles through historical	testing bridge models, learning	project
	and understanding mechanisms	and modern lenses	how different forces affect	Term 3) Futuristic cities project
	through practical, hands-on		performance and stability. The	
	learning.		project emphasizes hands-on	Year 8
			STEM learning, problem-solving,	Term 1) Biomimicry project
			and scientific inquiry	Term 2) Egg container design
8	Bottle opener and packaging	Money box project:	Chocolate bar project:	project
	design and make: Students	Students construct a wooden	Students design and develop a	Term 3) Bird feeder design
	design an ergonomic bottle	money box using cutting,	chocolate bar and packaging,	project
	opener and packaging, applying	shaping, and finishing tools,	focusing on graphic design,	
	user-centred design, ergonomics,	focusing on wood joint design	branding, and net construction.	Year 9
	and anthropometrics. They	and fabrication techniques. As	Using CAD software, they create	Term 1) Robin Day project
	produce third angle orthographic	they build, they learn about	visual identities and apply them	Term 2) William Morris project
	drawings and consider	the properties of different	to 3D packaging nets. They	Term 3) Bauhaus Project
	manufacturing processes. The	timbers and how material	explore the purpose of	
	project emphasizes designing for	characteristics influence design	packaging in protecting	

	comfort, function, and user needs while developing skills in technical drawing and product evaluation.	choices. They also develop confidence using various machines, understanding their functions, safety protocols, and how to achieve precision in shaping and finishing processes. Typeface design is introduced to inspire custom decorative finishes, blending craftsmanship with thoughtful, creative expression.	products, attracting consumers, and communicating brand values.	
9	Flat pack furniture design and make: Students design and develop a concept for flat pack furniture, focusing on usercentred and democratic design principles. They explore typical materials like manufactured boards and consider components used in industry. Through modelling and prototyping, students investigate how flat pack design balances functionality, sustainability, and ease of assembly for a wide audience.	Mackintosh tealight holder project: Students explore the influence of source material by studying Charles Rennie Mackintosh and Japonisme to inspire their tealight holder designs. They translate conceptual ideas into working drawings using exploded isometric techniques, then manufacture their designs using workshop tools—emphasizing creative interpretation, technical precision, and design realisation.	Bauhaus architecture project: Students study Bauhaus design principles and their global impact, using them to inspire a modern family home. They learn architectural drawing techniques including 2-point perspective and develop models using appropriate tools and materials. The project emphasizes functional aesthetics, purposeful simplicity, and translating abstract ideas into built form.	